Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
bioRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38464063

ABSTRACT

The MiniMUGA genotyping array is a popular tool for genetic QC of laboratory mice and genotyping of samples from most types of experimental crosses involving laboratory strains, particularly for reduced complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, there is the opportunity to improve array's performance and the associated report's usefulness by leveraging thousands of samples genotyped since the initial description of MiniMUGA in 2020. Here we report our efforts to update and improve marker annotation, increase the number and the reliability of the consensus genotypes for inbred strains and increase the number of constructs that can reliably be detected with MiniMUGA. In addition, we have implemented key changes in the informatics pipeline to identify and quantify the contribution of specific genetic backgrounds to the makeup of a given sample, remove arbitrary thresholds, include the Y Chromosome and mitochondrial genome in the ideogram, and improve robust detection of the presence of commercially available substrains based on diagnostic alleles. Finally, we have made changes to the layout of the report, to simplify the interpretation and completeness of the analysis and added a table summarizing the ideogram. We believe that these changes will be of general interest to the mouse research community and will be instrumental in our goal of improving the rigor and reproducibility of mouse-based biomedical research.

2.
iScience ; 27(3): 109103, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38361611

ABSTRACT

The response to infection is generally heterogeneous and diverse, with some individuals remaining asymptomatic while others present with severe disease or a diverse range of symptoms. Here, we address the role of host genetics on immune phenotypes and clinical outcomes following viral infection by studying genetically diverse mice from the Collaborative Cross (CC), allowing for use of a small animal model with controlled genetic diversity while maintaining genetic replicates. We demonstrate variation by deeply profiling a broad range of innate and adaptive immune cell phenotypes at steady-state in 63 genetically distinct CC mouse strains and link baseline immune signatures with virologic and clinical disease outcomes following infection of mice with herpes simplex virus 2 (HSV-2) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work serves as a resource for CC strain selection based on steady-state immune phenotypes or disease presentation upon viral infection, and further, points to possible pre-infection immune correlates of survival and early viral clearance upon infection.

3.
Vaccines (Basel) ; 12(1)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276675

ABSTRACT

The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.

4.
J Cereb Blood Flow Metab ; 43(11): 1983-2004, 2023 11.
Article in English | MEDLINE | ID: mdl-37572089

ABSTRACT

Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Collateral number in skeletal muscle and intestine of selected high- and low-collateral strains evidenced the same relative abundance as in brain. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. Six additional suggestive QTL (LOD > 4.5) were also identified in CC-wide QTL mapping. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.


Subject(s)
Brain , Quantitative Trait Loci , Humans , Mice , Animals , Quantitative Trait Loci/genetics , Chromosome Mapping , Brain/blood supply , Collateral Circulation/genetics , Ischemia/genetics
5.
J Thromb Haemost ; 21(10): 2917-2928, 2023 10.
Article in English | MEDLINE | ID: mdl-37364776

ABSTRACT

BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES: We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS: We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS: We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION: Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.


Subject(s)
Blood Platelets , Plasminogen Activator Inhibitor 1 , Animals , Mice , Blood Platelets/metabolism , Fibrinolysis , Genomics , Mice, Inbred C57BL , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Quantitative Trait Loci , Humans
6.
Sci Rep ; 13(1): 393, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624251

ABSTRACT

Salmonella enterica serovar Typhi is the causative agent of typhoid fever restricted to humans and does not replicate in commonly used inbred mice. Genetic variation in humans is far greater and more complex than that in a single inbred strain of mice. The Collaborative Cross (CC) is a large panel of recombinant inbred strains which has a wider range of genetic diversity than laboratory inbred mouse strains. We found that the CC003/Unc and CC053/Unc strains are permissive to intraperitoneal but not oral route of S. Typhi infection and show histopathological changes characteristic of human typhoid. These CC strains are immunocompetent, and immunization induces antigen-specific responses that can kill S. Typhi in vitro and control S. Typhi in vivo. Our results indicate that CC003/Unc and CC053/Unc strains can help identify the genetic basis for typhoid susceptibility, S. Typhi virulence mechanism(s) in vivo, and serve as a preclinical mammalian model system to identify effective vaccines and therapeutics strategies.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Animals , Humans , Mice , Salmonella typhi , Collaborative Cross Mice , Mammals
7.
Genes Nutr ; 17(1): 13, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35945490

ABSTRACT

BACKGROUND: Obesity is a serious disease with a complex etiology characterized by overaccumulation of adiposity resulting in detrimental health outcomes. Given the liver's critical role in the biological processes that attenuate adiposity accumulation, elucidating the influence of genetics and dietary patterns on hepatic gene expression is fundamental for improving methods of obesity prevention and treatment. To determine how genetics and diet impact obesity development, mice from 22 strains of the genetically diverse recombinant inbred Collaborative Cross (CC) mouse panel were challenged to either a high-protein or high-fat high-sucrose diet, followed by extensive phenotyping and analysis of hepatic gene expression. RESULTS: Over 1000 genes differentially expressed by perturbed dietary macronutrient composition were enriched for biological processes related to metabolic pathways. Additionally, over 9000 genes were differentially expressed by strain and enriched for biological process involved in cell adhesion and signaling. Weighted gene co-expression network analysis identified multiple gene clusters (modules) associated with body fat % whose average expression levels were influenced by both dietary macronutrient composition and genetics. Each module was enriched for distinct types of biological functions. CONCLUSIONS: Genetic background affected hepatic gene expression in the CC overall, but diet macronutrient differences also altered expression of a specific subset of genes. Changes in macronutrient composition altered gene expression related to metabolic processes, while genetic background heavily influenced a broad range of cellular functions and processes irrespective of adiposity. Understanding the individual role of macronutrient composition, genetics, and their interaction is critical to developing therapeutic strategies and policy recommendations for precision nutrition.

8.
Mamm Genome ; 33(4): 575-589, 2022 12.
Article in English | MEDLINE | ID: mdl-35819478

ABSTRACT

Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for [Formula: see text]-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice's ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.


Subject(s)
Arsenic , Arsenicals , Diabetes Mellitus, Type 2 , Insulins , Humans , Male , Mice , Animals , Arsenic/toxicity , Blood Glucose , Collaborative Cross Mice , Diabetes Mellitus, Type 2/genetics , Body Weight
9.
mBio ; 13(4): e0145422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862771

ABSTRACT

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to severe acute respiratory syndrome coronavirus (SARS-CoV) disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6, that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2, and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species. IMPORTANCE Host genetic variation is an important determinant that predicts disease outcomes following infection. In the setting of highly pathogenic coronavirus infections genetic determinants underlying host susceptibility and mortality remain unclear. To elucidate the role of host genetic variation on sarbecovirus pathogenesis and disease outcomes, we utilized the Collaborative Cross (CC) mouse genetic reference population as a model to identify susceptibility alleles to SARS-CoV and SARS-CoV-2 infections. Our findings reveal that a multitrait loci found in chromosome 9 is an important regulator of sarbecovirus pathogenesis in mice. Within this locus, we identified and validated CCR9 and CXCR6 as important regulators of host disease outcomes. Specifically, both CCR9 and CXCR6 are protective against severe SARS-CoV, SARS-CoV-2, and SARS-related HKU3 virus disease in mice. This chromosome 9 multitrait locus may be important to help identify genes that regulate coronavirus disease outcomes in humans.


Subject(s)
COVID-19 , Communicable Diseases , Severe acute respiratory syndrome-related coronavirus , Virus Diseases , Animals , Collaborative Cross Mice , Genome-Wide Association Study , Humans , Mice , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics
10.
bioRxiv ; 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35677067

ABSTRACT

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.

11.
Front Psychiatry ; 13: 800245, 2022.
Article in English | MEDLINE | ID: mdl-35599758

ABSTRACT

Cocaine use disorders (CUD) are devastating for affected individuals and impose a significant societal burden, but there are currently no FDA-approved therapies. The development of novel and effective treatments has been hindered by substantial gaps in our knowledge about the etiology of these disorders. The risk for developing a CUD is influenced by genetics, the environment and complex interactions between the two. Identifying specific genes and environmental risk factors that increase CUD risk would provide an avenue for the development of novel treatments. Rodent models of addiction-relevant behaviors have been a valuable tool for studying the genetics of behavioral responses to drugs of abuse. Traditional genetic mapping using genetically and phenotypically divergent inbred mice has been successful in identifying numerous chromosomal regions that influence addiction-relevant behaviors, but these strategies rarely result in identification of the causal gene or genetic variant. To overcome this challenge, reduced complexity crosses (RCC) between closely related inbred mouse strains have been proposed as a method for rapidly identifying and validating functional variants. The RCC approach is dependent on identifying phenotypic differences between substrains. To date, however, the study of addiction-relevant behaviors has been limited to very few sets of substrains, mostly comprising the C57BL/6 lineage. The present study expands upon the current literature to assess cocaine-induced locomotor activation in 20 inbred mouse substrains representing six inbred strain lineages (A/J, BALB/c, FVB/N, C3H/He, DBA/2 and NOD) that were either bred in-house or supplied directly by a commercial vendor. To our knowledge, we are the first to identify significant differences in cocaine-induced locomotor response in several of these inbred substrains. The identification of substrain differences allows for the initiation of RCC populations to more rapidly identify specific genetic variants associated with acute cocaine response. The observation of behavioral profiles that differ between mice generated in-house and those that are vendor-supplied also presents an opportunity to investigate the influence of environmental factors on cocaine-induced locomotor activity.

12.
Brain Commun ; 4(2): fcac073, 2022.
Article in English | MEDLINE | ID: mdl-35474855

ABSTRACT

Sudden unexpected death in epilepsy is the most catastrophic outcome of epilepsy. Each year there are as many as 1.65 cases of such death for every 1000 individuals with epilepsy. Currently, there are no methods to predict or prevent this tragic event, due in part to a poor understanding of the pathologic cascade that leads to death following seizures. We recently identified enhanced seizure-induced mortality in four inbred strains from the genetically diverse Collaborative Cross mouse population. These mouse models of sudden unexpected death in epilepsy provide a unique tool to systematically examine the physiological alterations during fatal seizures, which can be studied in a controlled environment and with consideration of genetic complexity. Here, we monitored the brain oscillations and heart functions before, during, and after non-fatal and fatal seizures using a flurothyl-induced seizure model in freely moving mice. Compared with mice that survived seizures, non-survivors exhibited significant suppression of brainstem neural oscillations that coincided with cortical epileptic activities and tachycardia during the ictal phase of a fatal seizure. Non-survivors also exhibited suppressed delta (0.5-4 Hz)/gamma (30-200 Hz) phase-amplitude coupling in cortex but not in brainstem. A connectivity analysis revealed elevated synchronization of cortex and brainstem oscillations in the delta band during fatal seizures compared with non-fatal seizures. The dynamic ictal oscillatory and connectivity features of fatal seizures provide insights into sudden unexpected death in epilepsy and may suggest biomarkers and eventual therapeutic targets.

13.
PLoS Genet ; 18(3): e1010076, 2022 03.
Article in English | MEDLINE | ID: mdl-35286297

ABSTRACT

Using information from allele-specific gene expression (ASE) can improve the power to map gene expression quantitative trait loci (eQTLs). However, such practice has been limited, partly due to computational challenges and lack of clarification on the size of power gain or new findings besides improved power. We have developed geoP, a computationally efficient method to estimate permutation p-values, which makes it computationally feasible to perform eQTL mapping with ASE counts for large cohorts. We have applied geoP to map eQTLs in 28 human tissues using the data from the Genotype-Tissue Expression (GTEx) project. We demonstrate that using ASE data not only substantially improve the power to detect eQTLs, but also allow us to quantify individual-specific genetic effects, which can be used to study the variation of eQTL effect sizes with respect to other covariates. We also compared two popular methods for eQTL mapping with ASE: TReCASE and RASQUAL. TReCASE is ten times or more faster than RASQUAL and it provides more robust type I error control.


Subject(s)
Quantitative Trait Loci , Alleles , Humans , Quantitative Trait Loci/genetics
14.
Elife ; 112022 02 03.
Article in English | MEDLINE | ID: mdl-35112666

ABSTRACT

The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the pathogen's ability to adapt to the variable immune pressures exerted by the host. Understanding this interplay has proven difficult, largely because experimentally tractable animal models do not recapitulate the heterogeneity of tuberculosis disease. We leveraged the genetically diverse Collaborative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to create a resource for associating bacterial genetic requirements with host genetics and immunity. We report that CC strains vary dramatically in their susceptibility to infection and produce qualitatively distinct immune states. Global analysis of Mtb transposon mutant fitness (TnSeq) across the CC panel revealed that many virulence pathways are only required in specific host microenvironments, identifying a large fraction of the pathogen's genome that has been maintained to ensure fitness in a diverse population. Both immunological and bacterial traits can be associated with genetic variants distributed across the mouse genome, making the CC a unique population for identifying specific host-pathogen genetic interactions that influence pathogenesis.


Subject(s)
Collaborative Cross Mice/genetics , Genetic Predisposition to Disease , Genetic Variation , Host-Pathogen Interactions/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Animals , Disease Models, Animal , Genotype , Male , Mice , Mycobacterium tuberculosis/pathogenicity , Phenotype
15.
Immunohorizons ; 5(4): 157-169, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893179

ABSTRACT

The goal of a successful immune response is to clear the pathogen while sparing host tissues from damage associated with pathogen replication and active immunity. Regulatory T cells (Treg) have been implicated in maintaining this balance as they contribute both to the organization of immune responses as well as restriction of inflammation and immune activation to limit immunopathology. To determine if Treg abundance prior to pathogen encounter can be used to predict the success of an antiviral immune response, we used genetically diverse mice from the collaborative cross infected with West Nile virus (WNV). We identified collaborative cross lines with extreme Treg abundance at steady state, either high or low, and used mice with these extreme phenotypes to demonstrate that baseline Treg quantity predicted the magnitude of the CD8 T cell response to WNV infection, although higher numbers of baseline Tregs were associated with reduced CD8 T cell functionality in terms of TNF and granzyme B expression. Finally, we found that abundance of CD44+ Tregs in the spleen at steady state was correlated with an increased early viral load within the spleen without an association with clinical disease. Thus, we propose that Tregs participate in disease tolerance in the context of WNV infection by tuning an appropriately focused and balanced immune response to control the virus while at the same time minimizing immunopathology and clinical disease. We hypothesize that Tregs limit the antiviral CD8 T cell function to curb immunopathology at the expense of early viral control as an overall host survival strategy.


Subject(s)
Brain/immunology , CD8-Positive T-Lymphocytes/immunology , Spleen/immunology , T-Lymphocytes, Regulatory/immunology , West Nile Fever/immunology , Animals , Brain/pathology , Brain/virology , CD8-Positive T-Lymphocytes/metabolism , Granzymes/immunology , Granzymes/metabolism , Immune Tolerance , Male , Mice , Spleen/pathology , Spleen/virology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Viral Load , West Nile Fever/pathology , West Nile Fever/virology , West Nile virus/immunology , West Nile virus/physiology
16.
Genetics ; 218(1)2021 05 17.
Article in English | MEDLINE | ID: mdl-33693696

ABSTRACT

Female mammals are functional mosaics of their parental X-linked gene expression due to X chromosome inactivation (XCI). This process inactivates one copy of the X chromosome in each cell during embryogenesis and that state is maintained clonally through mitosis. In mice, the choice of which parental X chromosome remains active is determined by the X chromosome controlling element (Xce), which has been mapped to a 176-kb candidate interval. A series of functional Xce alleles has been characterized or inferred for classical inbred strains based on biased, or skewed, inactivation of the parental X chromosomes in crosses between strains. To further explore the function structure basis and location of the Xce, we measured allele-specific expression of X-linked genes in a large population of F1 females generated from Collaborative Cross (CC) strains. Using published sequence data and applying a Bayesian "Pólya urn" model of XCI skew, we report two major findings. First, inter-individual variability in XCI suggests mouse epiblasts contain on average 20-30 cells contributing to brain. Second, CC founder strain NOD/ShiLtJ has a novel and unique functional allele, Xceg, that is the weakest in the Xce allelic series. Despite phylogenetic analysis confirming that NOD/ShiLtJ carries a haplotype almost identical to the well-characterized C57BL/6J (Xceb), we observed unexpected patterns of XCI skewing in females carrying the NOD/ShiLtJ haplotype within the Xce. Copy number variation is common at the Xce locus and we conclude that the observed allelic series is a product of independent and recurring duplications shared between weak Xce alleles.


Subject(s)
Dosage Compensation, Genetic , X Chromosome Inactivation/genetics , X Chromosome/genetics , Alleles , Animals , Bayes Theorem , Chromosome Mapping/methods , DNA Copy Number Variations/genetics , Genes, X-Linked/genetics , Haplotypes , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred NOD , Phylogeny , RNA, Long Noncoding/genetics
17.
PLoS Pathog ; 17(1): e1009287, 2021 01.
Article in English | MEDLINE | ID: mdl-33513210

ABSTRACT

The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from individuals that go on to become infected with SARS-CoV-2. Here, we utilized data from genetically diverse Collaborative Cross (CC) mice infected with SARS-CoV to determine whether baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. Our study serves as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease.


Subject(s)
COVID-19/immunology , COVID-19/virology , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Animals , COVID-19/genetics , Female , Humans , Male , Mice , Mice, Inbred C57BL , Phenotype , Viral Load
18.
Epilepsia ; 61(12): 2847-2856, 2020 12.
Article in English | MEDLINE | ID: mdl-33140451

ABSTRACT

OBJECTIVE: SCN8A encephalopathy is a developmental epileptic encephalopathy typically caused by de novo gain-of-function mutations in Nav 1.6. Severely affected individuals exhibit refractory seizures, developmental delay, cognitive disabilities, movement disorders, and elevated risk of sudden death. Patients with the identical SCN8A variant can differ in clinical course, suggesting a role for modifier genes in determining disease severity. The identification of genetic modifiers contributes to understanding disease pathogenesis and suggesting therapeutic interventions. METHODS: We generated F1 and F2 crosses between inbred mouse strains and mice carrying the human pathogenic variants SCN8A-R1872W and SCN8A-N1768D. Quantitative trait locus (QTL) analysis of seizure-related phenotypes was used for chromosomal mapping of modifier loci. RESULTS: In an F2 cross between strain SJL/J and C57BL/6J mice carrying the patient mutation R1872W, we identified a major QTL on chromosome 5 containing the Gabra2 gene. Strain C57BL/6J carries a splice site mutation that reduces expression of Gabra2, encoding the α2 subunit of the aminobutyric acid type A receptor. The protective wild-type allele of Gabra2 from strain SJL/J delays the age at seizure onset and extends life span of the Scn8a mutant mice. Additional Scn8a modifiers were observed in the F2 cross and in an F1 cross with strain C3HeB/FeJ. SIGNIFICANCE: These studies demonstrate that the SJL/J strain carries multiple modifiers with protective effects against seizures induced by gain-of-function mutations in Scn8a. Homozygosity for the hypomorphic variant of Gabra2 in strain C57BL/6J is associated with early seizure onset and short life span. GABRA2 is a potential therapeutic target for SCN8A encephalopathy.


Subject(s)
Epilepsy/genetics , NAV1.6 Voltage-Gated Sodium Channel/physiology , Receptors, GABA-A/physiology , Animals , Chromosome Mapping , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Transgenic , NAV1.6 Voltage-Gated Sodium Channel/genetics , Quantitative Trait Loci/genetics , Receptors, GABA-A/genetics , Seizures/genetics
19.
Genetics ; 216(3): 781-804, 2020 11.
Article in English | MEDLINE | ID: mdl-32978270

ABSTRACT

The biological basis of exercise behavior is increasingly relevant for maintaining healthy lifestyles. Various quantitative genetic studies and selection experiments have conclusively demonstrated substantial heritability for exercise behavior in both humans and laboratory rodents. In the "High Runner" selection experiment, four replicate lines of Mus domesticus were bred for high voluntary wheel running (HR), along with four nonselected control (C) lines. After 61 generations, the genomes of 79 mice (9-10 from each line) were fully sequenced and single nucleotide polymorphisms (SNPs) were identified. We used nested ANOVA with MIVQUE estimation and other approaches to compare allele frequencies between the HR and C lines for both SNPs and haplotypes. Approximately 61 genomic regions, across all somatic chromosomes, showed evidence of differentiation; 12 of these regions were differentiated by all methods of analysis. Gene function was inferred largely using Panther gene ontology terms and KO phenotypes associated with genes of interest. Some of the differentiated genes are known to be associated with behavior/motivational systems and/or athletic ability, including Sorl1, Dach1, and Cdh10 Sorl1 is a sorting protein associated with cholinergic neuron morphology, vascular wound healing, and metabolism. Dach1 is associated with limb bud development and neural differentiation. Cdh10 is a calcium ion binding protein associated with phrenic neurons. Overall, these results indicate that selective breeding for high voluntary exercise has resulted in changes in allele frequencies for multiple genes associated with both motivation and ability for endurance exercise, providing candidate genes that may explain phenotypic changes observed in previous studies.


Subject(s)
Directed Molecular Evolution , Polymorphism, Single Nucleotide , Running , Selection, Genetic , Animals , Cadherins/genetics , Chromosomes/genetics , Eye Proteins/genetics , Female , Hybridization, Genetic , Male , Membrane Transport Proteins/genetics , Mice , Mice, Inbred ICR , Multifactorial Inheritance , Receptors, LDL/genetics
20.
Epilepsia ; 61(9): 2010-2021, 2020 09.
Article in English | MEDLINE | ID: mdl-32852103

ABSTRACT

OBJECTIVE: Animal studies remain essential for understanding mechanisms of epilepsy and identifying new therapeutic targets. However, existing animal models of epilepsy do not reflect the high level of genetic diversity found in the human population. The Collaborative Cross (CC) population is a genetically diverse recombinant inbred panel of mice. The CC offers large genotypic and phenotypic diversity, inbred strains with stable genomes that allow for repeated phenotypic measurements, and genomic tools including whole genome sequence to identify candidate genes and candidate variants. METHODS: We evaluated multiple complex epileptic traits in a sampling of 35 CC inbred strains using the flurothyl-induced seizure and kindling paradigm. We created an F2 population of 297 mice with extreme seizure susceptibility and performed quantitative trait loci (QTL) mapping to identify genomic regions associated with seizure sensitivity. We used quantitative RNA sequencing from CC hippocampal tissue to identify candidate genes and whole genome sequence to identify genetic variants likely affecting gene expression. RESULTS: We identified new mouse models with extreme seizure susceptibility, seizure propagation, epileptogenesis, and SUDEP (sudden unexpected death in epilepsy). We performed QTL mapping and identified one known and seven novel loci associated with seizure sensitivity. We combined whole genome sequencing and hippocampal gene expression to pinpoint biologically plausible candidate genes (eg, Gabra2) and variants associated with seizure sensitivity. SIGNIFICANCE: New mouse models of epilepsy are needed to better understand the complex genetic architecture of seizures and to identify therapeutics. We performed a phenotypic screen utilizing a novel genetic reference population of CC mice. The data we provide enable the identification of protective/risk genes and novel molecular mechanisms linked to complex seizure traits that are currently challenging to study and treat.


Subject(s)
Collaborative Cross Mice/genetics , Disease Models, Animal , Epilepsy/genetics , Hippocampus/metabolism , Mice , Seizures/genetics , Animals , Chromosome Mapping , Convulsants , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy/physiopathology , Excitatory Amino Acid Agonists , Flurothyl , Gene Expression , Gene Expression Profiling , Genetic Predisposition to Disease , Genotype , Kainic Acid , Mice, Inbred Strains , Pentylenetetrazole , Phenotype , Quantitative Trait Loci , Seizures/chemically induced , Seizures/metabolism , Seizures/physiopathology , Sudden Unexpected Death in Epilepsy , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...